Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of an ${it in-situ}$ continuous air monitor for the measurement of highly radioactive alpha-emitting particulates ($$alpha$$-aerosols) under high humidity environment

Tsubota, Yoichi; Honda, Fumiya; Tokonami, Shinji*; Tamakuma, Yuki*; Nakagawa, Takahiro; Ikeda, Atsushi

Nuclear Instruments and Methods in Physics Research A, 1030, p.166475_1 - 166475_7, 2022/05

 Times Cited Count:2 Percentile:30.99(Instruments & Instrumentation)

In the long-lasting decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), the dismantling of nuclear fuel debris (NFD) remaining in the damaged reactors is an unavoidable but significant issue with many technical difficulties. The dismantling is presumed to involve mechanical cutting, generating significant concentrations of particulates containing $$alpha$$-radionuclides ($$alpha$$-aerosols) that pose significant health risk upon inhalation. In order to minimize the radiation exposure of workers with $$alpha$$-aerosols during the dismantling/decommissioning process at 1F, it is essential to monitor the concentration of $$alpha$$-aerosols at the point of initial generation, i.e. inside the primary containment vessels (PCV) of the damaged reactors. Toward this end, an ${it in situ}$ monitoring system for $$alpha$$-aerosols (${it in situ}$ alpha air monitor: IAAM) was developed and its technical performance was investigated under the conditions expected for the actual environments at 1F. IAAM was confirmed to fulfill four technical requirements: (1) steady operation under high humidity, (2) operation without using filters, (3) capability of measuring a high counting rate of $$alpha$$-radiation, and (4) selective measurement of $$alpha$$-radiation even under high radiation background with $$beta$$/$$gamma$$-rays. IAAM is capable of selectively measuring $$alpha$$-aerosols with a concentration of 3.3 $$times$$ 10$$^{2}$$ Bq/cm$$^{3}$$ or higher without saturation under a high humid environment (100%-relative humidity) and under high background with $$beta$$/$$gamma$$-radiation (up to 100 mSv/h of $$gamma$$-radiation). These results demonstrate promising potential of IAAM to be utilized as a reliable monitoring system for $$alpha$$-aerosols during the dismantling of NFD, as well as the whole long-lasting decommissioning of 1F.

JAEA Reports

Basic study for on-line monitoring of tiny particles including alpha emitters by aerosol time-of-flight mass spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2021-074, 104 Pages, 2022/03

JAEA-Review-2021-074.pdf:4.91MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Basic study for on-line monitoring of tiny particles including alpha emitters by aerosol time-of-flight mass spectroscopy" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The present study aims to conduct a feasibility study of Aerosol time-of-flight mass spectroscopy (ATOFMS) to on-line measurement of tiny particles containing alpha emitters which might be dispersed in cutting the debris in reactors of the Fukushima Daiichi Nuclear Power Station for realizing their real-time monitoring.

JAEA Reports

Basic study for on-line monitoring of tiny particles including alpha emitters by aerosol time-of-flight mass spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2020-050, 69 Pages, 2021/01

JAEA-Review-2020-050.pdf:3.79MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Basic study for On-Line Monitoring of Tiny Particles including Alpha Emitters by Aerosol Time-Of-Flight Mass Spectroscopy" conducted in FY2019. The present study aims to conduct a feasibility study of Aerosol Time-Of-Flight Mass Spectroscopy (ATOFMS) technique to on-line measurement of tiny particles including alpha emitters which might be dispersed in cutting debris in reactors of the Fukushima Daiichi Nuclear Power Station for realizing real-time monitoring of the tiny particles. In FY2019, we prepared the solid (U, Zr)O$$_{2}$$ samples and the acidic and basic U solutions as model materials.

Journal Articles

Deposition fractions of submicron aerosol particles in an air sampling pipeline

Matsui, Hiroshi

Earozoru Kenkyu, 11(4), p.337 - 348, 1996/00

no abstracts in English

Journal Articles

Selective collection of trace amounts of radioiodine in radioactive sodium aerosol utilizing arc-discharge technique

; ;

Journal of Nuclear Science and Technology, 11(8), p.345 - 348, 1974/08

 Times Cited Count:0

no abstracts in English

Oral presentation

An In-situ alpha air monitor for the retrieval of fuel debris at the Fukushima Daiichi Nuclear Power Station

Honda, Fumiya; Tsubota, Yoichi; Tamakuma, Yuki*; Tokonami, Shinji*; Ikeda, Atsushi; Nakagawa, Takahiro

no journal, , 

A large number of radioactive aerosols, especially alpha particles, are expected to be generated during the fuel debris retrieval on the Fukushima Daiichi Nuclear Power Station. From the viewpoint of preventing contamination of the surrounding environment and the vicinity of the human-access area, it is important to measure the activity concentration of airborne radioactive substances inside the primary containment vessels (PCVs). In particular, it is necessary to monitor the concentration of particulates containing $$alpha$$-nuclides ($$alpha$$-aerosols), which have high effective dose coefficients upon inhalation. This presentation reports the development of an in-situ alpha air monitor (IAAM) for direct measurement of $$alpha$$-aerosols by combining a flat-type flow path (FFP), an air heater, a ZnS scintillator, and a multi anode photomultiplier tube. The monitor should operate under high humidity with the maximum counting rate of approx. 2.1$$times$$10$$^{7}$$ cpm. To achieve the two requirements, the monitor was designed to keep the air sufficiently dry without overheating the detector, and to reduce the detection of coarse particles. This study also conducted a basic performance test using the developed IAAM with a modified FFP. As a result, we could keep the humidity of the air less than 30%RH by heating the inlet of the FFP to 80 $$^{circ}$$C. In addition, by placing the FFP in a vertical position and installing a bend at the air intake port, coarse particles were reduced approx. 1/2-1/3. These achievements enable the monitor to measure $$alpha$$-aerosols more precisely in the viewpoint of internal exposure assessment.

Oral presentation

Environmental radiation monitoring after the Fukushima NPP accident, 2; Long-term monitoring of atmospheric radiocesium concentrations

Abe, Tomohisa; Funaki, Hironori; Yoshimura, Kazuya; Sato, Rina; Sasaki, Miyuki

no journal, , 

Oral presentation

Evaluation of the activity median aerodynamic diameter at the specific reconstruction and revitalization base area

Abe, Tomohisa; Yoshimura, Kazuya; Funaki, Hironori; Nakanishi, Takahiro; Ochiai, Shinya*; Nagao, Seiya*

no journal, , 

no abstracts in English

Oral presentation

Study of particle size distribution of atmospheric dust and transportability of radionuclides

Abe, Tomohisa; Yoshimura, Kazuya; Funaki, Hironori; Nakanishi, Takahiro; Ochiai, Shinya*; Nagao, Seiya*

no journal, , 

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1